Хромосомные мутации это перестройки хромосом

Биология и медицина

Хромосомные мутации (хромосомные перестройки)

Хромосомные мутации — это перестройки хромосом. Участки хромосом могут изменить свое положение, потеряться или удвоиться. Проиллюстрируем основные типы хромосомных мутаций: условно обозначим нормальный порядок генов как 12345678910, тогда 123-78910 — потеря участка, 1234-234- 5678910 — удвоение участка, 123-7654-8910 — поворот участка на 180*, 123-АБВГДЕ — перемещение участка на негомологичную хромосому См. Хромосомные перестройки

Хромосомные мутации — это мутации, нарушающие существующие группы сцепления или приводящие к возникновению новых групп сцепления . Такое определение указывает на способ, которым эти мутации в первую очередь обнаруживаются. Согласно другому определению, хромосомные мутации — это мутации, обусловленные перестройками хромосом. Хромосомные перестройки бывают разных типов. Пожалуй, наиболее распространенная — рекомбинация, или кроссинговер , при котором происходит обмен гомологичными участками хромосом ( рис. 112 ). Другие типы перестроек хромосом — это транслокации , инверсии , делеции и дупликации .

Разнообразны варианты изменения морфологии хромосом . Различают следующие ХП: — Реципрокные транслокации — обмен участками хромосом. — Робертсоновские транслокации — слияние двух акроцентрических хромосом в одну двуплечую хромосому. — Парацентрическая инверсия — изменение порядка генов на обратный в пределах участка, не затрагивающего центромеру . — Перицентрическая инверсия — то же самое, но в пределах участка, включающего центромеру. — Инсерция — встройка дополнительного хромосомного материала в какой-либо участок хромосомы. — Делеция — потеря участка хромосомы ХП приводят к изменениям кариотипа .Хромосомные дупликации

Научная электронная библиотека

Юров И. Ю., Воинова В. Ю., Ворсанова С. Г., Юров Ю. Б.,

2.8. Вариации генома человека: генные и хромосомные мутации

В основе практически всех генетических исследований лежит понятие вариации. Это понятие включает в себя все типы изменений последовательностей ДНК (мутаций), наблюдаемых на хромосомном или генном уровнях. С одной стороны, вариации генома служат объяснением межиндивидульного разнообразия, с другой, мутации могут приводить к патогенным изменениям жизнедеятельности организма, являясь, таким образом, причиной наследственного заболевания. Следует также ввести несколько терминов, использующихся для описания процесса мутационного изменения ДНК: локус – определенный участок хромосомы, содержащий специфические последовательности ДНК или гены, аллель – две или более альтернативных форм гена, расположенных в одном и том же локусе пары гомологичных хромосом. Если различие последовательности ДНК двух аллелей одного локуса наблюдается с частотой более 1 % в общей популяции, то данный тип вариации обозначается полиморфизмом. Изменение последовательности ДНК, имеющее меньшую частоту, как правило, называется мутацией. Известно два основных вида мутаций, связанных с наследственной патологией: хромосомные (геномные) – изменение числа и/или структуры хромосом (генома) в клетке и генные (изменение последовательности ДНК в конкретном гене). Исходя из данной классификации, можно выделить направления генетических исследований нарушений последовательности ДНК, приводящих к наследственным заболеваниям, которые изучает медицинская генетика, а именно, поиск изменений последовательностей нуклеиновых кислот и белков на молекулярном уровне (молекулярная генетика) и изучение изменений числа, структуры и организации хромосом (классическая и молекулярная цитогенетика).

Молекулярно-генетические исследования основаны на современных представлениях об особенностях молекулы ДНК и биохимических процессах транскрипции и трансляции. Основная их цель заключается в выявлении генных мутаций, приводящих к характерным фенотипическим проявлениям. Генные мутации представляют собой изменение расположения, потерю и приобретение ДНК относительно её линейной последовательности, обнаруживаемой в норме. Наиболее частые типы генных мутаций являются замена, потери и/или вставки одного нуклеотида. Последние обозначаются аббревиатурой SNP (single nucleotide polymorphsims) и проявляются наиболее часто в геноме человека. В среднем, SNP, ведущие к вариации между аллелями у одного индивидуума, встречаются в каждых 1500 пар нуклеотидов. Однако, большинство из них расположены в некодирущих последовательностях и, в основном, не имеют фенотипических последствий. Если изменение последовательности ДНК происходит в гене, кодирующем белок, то оно с высокой долей вероятности будет связано с нарушениями жизнедеятельности организма. Существует следующая классификация генных мутаций:

Миссенс мутации – замена одного нуклеотида на другой или несинонимические изменения последовательности ДНК. Теоретически можно выделить два типа подобных мутаций: консервативные и неконсервативные. Консервативные миссенс мутации приводят к замене одного кодона на равнозначный (кодоны, кодирующие один и тот же аминокислотный остаток) или на кодон другого аминокислотного остатка, который не изменяет физико-химические свойства белка, кодированного соответствующим геном. Неконсервативные миссенс мутации, как правило, изменяют биохимические свойства белка и, следовательно, приводят к нарушению его функциональной активности.

Читайте также:  Алгоритм измерения артериального давления; Студопедия

Нонсенс мутации – изменения кодирующей последовательности ДНК, приводящие к образованию стоп-кодона, вследствие чего синтезируется белок, в котором отсутствует какая-то часть его последовательности.

Мутация сдвига рамки считывания – любые изменения последовательности ДНК гена (в основном, потери или вставки нуклеотидов), которые приводят к сдвигу считывания последовательности в ходе транскрипции. Результатом этого является синтез совершенно нового белка или образование матричной РНК, не несущей в себе никакой информации относительно аминокислотной последовательности.

Непатогенные изменения последовательности ДНК – вариации последовательности ДНК, включающие консервативные миссенс мутации, или так называемые синонимические мутации, которые не изменяют закодированную информацию в ДНК гена или не воздействуют на функциональную активность белковых макромолекул.

Мутации также происходят в некодирующих последовательностях ДНК (интронах). Данный тип вариаций, как правило, не имеет фенотипических последствий. Тем не менее, при сдвиге рамки считывания или образовании альтернативных форм белковых макромолекул (альтернативный сплайсинг), эти вариации могут приводить к нарушению функциональной активности белковых макромолекул и, как следствие, фенотипическим последствиям. В данном контексте сложностью представляется идентификация патогенных мутаций, так как понятие «нормы» для медико-генетических исследований предположительно в силу того, что на молекулярном уровне геном человека является в значительной степени нестабильным. Иными словами, только рекуррентные мутации (наиболее частые повторные мутации, которые выявляются у индивидуумов с известным наследственным заболеванием) могут быть признаны патогенными. В случаях, когда обнаруживается новая мутация, возникает необходимость молекулярно-генетических исследований близких родственников пациента, чтобы определить является ли она причиной заболевания.

Хромосомные (геномные) мутации (аномалии) связаны либо с различными структурными перестройками хромосом, либо с изменением их числа (n). Численные изменения в наборе хромосом (кариотипе) могут быть двух типов: полиплоидии – умножение полного хромосомного набора (3n, 4n и т.д.) или генома, кратное гаплоидному числу хромосом; анеуплоидии – увеличение или уменьшение числа хромосом в наборе, некратное гаплоидному. Эти количественные изменения кариотипа обусловлены, как правило, нарушениями мейоза или митоза. Численные хромосомные аномалии в виде анеуплоидии делятся на моносомию (потерю хромосомы или её части – частичная моносомия) и трисомию или полисомию (приобретение одной/нескольких хромосом или её части – частичная трисомия). Данные изменения кариотипа связаны с комплексом врожденных пороков развития и, как правило, с заболеваниями, сопровождающимися умственной отсталостью, или тяжелыми психическими расстройствами. В настоящее время описаны случаи изменений хромосомного набора с участием половых хромосом и некоторых аутосом при шизофрении и аутизме. Например, до 5–15 % детей с аутистическими расстройствами имеют хромосомные аномалии. Это позволяет рассматривать хромосомный дисбаланс в организме в качестве одной из возможных причин отдельных случаев нервных и психических болезней.

Структурные изменения могут затрагивать всю хромосому, а также сопровождаться изменением количества генетического материала в ядре или его перемещением. Сбалансированные хромосомные аномалии представляют собой перестройки, за счет которых выявляется кариотип с измененным набором расположения генов в пределах хромосом или между хромосомами, который отличается от традиционного (нормального). В большинстве случаев носители сбалансированных хромосомных аномалий фенотипически нормальны, но для их потомства возникает большой риск иметь несбалансированный кариотип. Следует отметить, что в отдельных случаях носители сбалансированного кариотипа могут иметь различные врожденные пороки и/или микроаномалии, а также нарушения нервного и психического развития. Если при структурных хромосомных мутациях наблюдается потеря или приобретение генетического материала, то они являются несбалансированными хромосомными аномалиями.

Цитогенетически структурные хромосомные (геномные) перестройки классифицируют по принципу линейной последовательности расположения генов: делеции (потеря хромосомных участков), дупликации (удвоение хромосомных участков), инверсии (перевертывание на 180° относительно нормальной последовательности хромосомных участков), инсерции (вставки хромосомных участков) и транслокации (изменение расположения хромосомных участков). В последнее время в литературе хромосомные микроаномалии и перестройки могут обозначаться, как геномные.

Изменения генома (хромосом), приводящие к редким заболеваниям, могут включать как крупные микроскопически видимые перестройки (более 5 млн пн), так и вариации числа копий последовательностей ДНК (CNV) и однонуклеотидные полиморфные изменения последовательности ДНК (SNP). Как уже было сказано выше, в настоящее время для определения причины заболевания на геномном уровне используются различные технологии, наиболее распространенными из которых являются полногеномные методы, в частности, молекулярное кариотипирование (arrayCGH). Однако патогенность выявленных вариаций генома можно определить только при помощи использования инновационных биоинформатических технологий. Большой массив информации, собранный на интернет-ресурсах, позволяет уточнить функциональные особенности (онтологию) как отдельного гена, так и целой генной сети за счёт анализа последовательности кодируемого белка и моделирования молекулярных процессов, инициированных геномным изменением.

Читайте также:  10 причин выпадения волос советы и рекомендации

Таким образом, с хромосомными болезнями связаны аномалии микроскопически видимых численных или структурных нарушений хромосом, геномные же болезни связаны как с микроаномалиям хромосом, так и с вариациями числа копий последовательностей ДНК (CNV).

Большое значение имеет изучение хромосомных мутаций, под действием факторов внешней среды. Показано, что хромосомы человека отличаются высокой чувствительностью к действию радиации и химических веществ, которые принято называть мутагенными факторами (мутагенами). При анализе воздействия этих факторов следует различать нарушения в соматических и половых клетках. Первые затрагивают непосредственно жизнедеятельность исследуемого организма, тогда как вторые проявляются в последующих поколениях. Мутации хромосом в зародышевых клетках ведут к образованию аберрантных гамет, в результате которых возможна гибель зигот, эмбрионов на ранних стадиях внутриутробного развития, а также рождение детей со специфическими или неспецифическими хромосомными аномалиями, которые проявляются в виде определенной клинической картины или определенного фенотипа. Мутации хромосом в соматических клетках ведут к образованию неспецифичных хромосомных аномалий в виде хромосомных или хроматидных пробелов, разрывов, обменов в кариотипе, не ведущих к определенному фенотипу, характерному для конкретного заболевания. Подобные мутации не наследуются. Следует отметить, что при изучении такого рода воздействия мутагенных факторов представляется возможным оценить качественно и количественно действие ионизирующей радиации, химических веществ, вирусов, но полученные данные не могут быть перенесены на половые клетки, где результатом действия являются специфические хромосомные аномалии, влияющие на фенотип.

Хромосомные аномалии могут проявляться в так называемых мозаичных формах, к которым приводит неправильное деление клеток на различных стадиях эмбрионального и постнатального развития. Это позволяет разделить хромосомные аномалии на мозаичные и регулярные (аномальный кариотип наблюдается во всех клетках организма). Хромосомный мозаицизм представляет собой наличие нескольких популяций клеток с различным друг от друга хромосомным набором. Как правило, при мозаичных формах хромосомных аномалий наблюдают отсутствие отдельных клинических признаков определенного хромосомного синдрома и более легкое течение заболевания, но некоторые симптомы практически всегда присутствуют. Мозаичные структурные хромосомные аномалии наблюдаются достаточно редко, поэтому, когда речь идет о мозаичных хромосомных аномалиях, имеются в виду, в основном, численные аномалии, мозаичные формы которых имеют достаточно высокую популяционную частоту. Следует также отметить феномен тканеспецифического хромосомного мозаицизма – клетки с аномальным хромосомным набором присутствуют только в определенной ткани организма.

Хромосомная мутация у человека: что это и какие несёт последствия

Хромосомные мутации (их также называют перестройками, аберрациями) вызываются неправильным делением клетки и меняют структуру самой хромосомы. Чаще всего это происходит спонтанно и непредсказуемо под влиянием внешних факторов. Поговорим про виды хромосомных мутаций в генах и вызывающих их причинах. Мы расскажем что такое хромосомная мутация и какие последствия возникают для организма вследствие подобных изменений.

Виды хромосомных мутаций

Хромосомная мутация – это самопроизвольно произошедшая аномалия с отдельной хромосомой либо с участием нескольких из них. Произошедшие изменения бывают:

  • внутри единичной хромосомы, их называют внутрихромосомными;
  • межхромосомными, когда отдельные хромосомы обмениваются между собой определёнными фрагментами.

Что может происходить с носительницей информации в первом случае? В результате утраты хромосомного участка происходит нарушение эмбриогенеза и возникают различные аномалии, приводящие к умственному недоразвитию ребёнка или физическим уродствам (пороки сердца, нарушение строения гортани и других органов). Если происходит разрыв хромосомы, после которого вырванный фрагмент встраивается на своё место, но уже перевёрнутым на 180° – говорят об инверсии. Порядок расположения генов меняется. Ещё одна внутрихромосомная мутация – дупликация. В её процессе происходит удвоение участка хромосомы или он дублируется несколько раз, что приводит к множественным порокам умственного и физического развития.

Если же две хромосомы обмениваются фрагментами, явление носит название «реципрокной транслокации». Если фрагмент одной хромосомы встраивается в другую, это называют «нереципрокной транслокацией». «Центрическим слиянием» называют соединение пары хромосом в районе их центромер с утратой соседних участков. При мутации в виде поперечного разрыва соседних хромосом их называют изохромосомами. Такие изменения не имеют внешних проявлений у родившегося потомства, но делает его носителем аномальных хромосом, что может повлиять на возникновение отклонений у следующих поколений. Все типы хромосомной мутации закрепляются в генах и передаются по наследству.

Читайте также:  Трепетание предсердий что это такое, причины, симптомы, признаки на ЭКГ, лечение, прогноз

Основные причины, вызывающие мутации хромосом

Точные причины хромосомных мутаций в каждом конкретном случае нельзя назвать определённо. Вообще мутации ДНК являются инструментом естественного отбора и непременным условием эволюции. Они могут иметь положительное нейтральное или отрицательное значение и передаются по наследству. Все мутагены, способные приводить к изменениям в хромосомах, принято делить на 3 типа:

  • биологические (бактерии, вирусы);
  • химические (соли тяжёлых металлов, фенолы, спирты и другие химические вещества);
  • физические (радиоактивное и ультрафиолетовое излучение, слишком низкие и высокие температуры, электромагнитное поле).

Могут возникать и самопроизвольные хромосомные перестройки, без воздействия ухудшающих факторов, но такие случаи крайне редки. Происходит это под влиянием внутренних и внешних условий (так называемого мутационного давления среды). Такая случайность приводит к изменению генов и их новому распределению в геноме. Дальнейшая жизнеспособность организмов с возникшими изменениями определяется возможностью приспособления к выживанию, что является частью естественного отбора. Для человека, к примеру, мутационные процессы часто становятся источником различных наследственных болезней, порой несовместимых с жизнью.

В чём различие генной, геномной и хромосомной мутаций

Мутации в хромосомах, генах и геноме часто бывают связаны друг с другом. Генной называется мутация, происходящая внутри гена, хромосомной – внутри хромосомы. Мутации, приводящие к изменению числа хромосом, называют геномными.

Эти изменения объединяют в общее понятие «хромосомные аномалии», они имеют общую классификацию, которая подразделяет их на анеуплоидии и полиплоидии.

Всего науке известны около тысячи хромосомных и геномных аномалий, включающих различные синдромы (около 300 видов). Это и хромосомные болезни (яркий пример – синдром Дауна), и внутриутробные патологии, приводящие к выкидышам, и соматические заболевания.

Хромосомные болезни

Об их проявлении говорят при обнаружении тяжёлых врождённых генетически обусловленных заболеваний, проявляющихся врождёнными пороками развития. Такие болезни свидетельствуют о наиболее масштабных изменениях, произошедших в ДНК.

Сбой может возникнуть на любом этапе, даже в момент зачатия, при слиянии нормальных родительских клеток. Учёным пока ещё не удаётся влиять на этот механизм и предотвращать его. Вопрос этот изучен не до конца.

Для человека хромосомные мутации чаще носят негативный характер, что проявляется в возникновении выкидышей, мертворождении, проявлении уродств и отклонений в интеллекте, появлении генетически обусловленных опухолей. Все подобные болезни условно делят на 2 группы:

  1. Те, что вызваны нарушением числа хромосом в геноме. Эти аномалии составляют львиную долю всех хромосомных болезней. Причины, вызывающие их, – моносомии, трисомии и другие количественные нарушения. В эту же группу входят триплоидии и тетраплоидии, вызывающие гибель плода в утробе и его нежизнеспособность, приводящую к младенческой смертности. Самой распространённой и хорошо изученной болезнью этой группы является синдром Дауна, возникающий из-за трисомии или транслокации 21-й хромосомы.
  2. Те, что обусловлены изменениями в структуре самих хромосом. В этом случае происходит частичная дупликация или делеция хромосомных участков. Это влечёт за собой умственную отсталость, задержку роста и развития, характерные внешние проявления, врождённые пороки внутренних органов. Изменения могут коснуться и числа половых хромосом. У таких больных впоследствии выявляется бесплодие.

Можно ли вылечить или предотвратить хромосомные аномалии

В перспективе наукой ставятся задачи научиться вмешиваться в структуру клеток и менять ДНК человека при необходимости, но в текущий момент это невозможно. Как такового лечения хромосомных болезней не существует, разработаны лишь методы перинатальной диагностики (дородового обследования плода). С помощью этого метода возможно выявить синдромы Дауна и Эдвардса, а также врождённые пороки органов ещё не рождённого младенца.

По данным обследования врач вместе с родителями принимает решение о продлении или прерывании текущей беременности. Если патология предполагает возможность вмешательства, может быть проведена реабилитация плода ещё на стадии внутриутробного развития, в том числе и устраняющая порок операция.

Будущие родители ещё на стадии планирования беременности могут посетить генетическую консультацию, которая существует почти в каждом городе. Это особенно необходимо если в роду одного или обоих есть родственники с тяжёлыми наследственными заболеваниями. Генетик составит их родословную и порекомендует исследование кариотипа – полного набора хромосом.

Врачи считают, что такой анализ генов необходим каждой паре, планирующей появление малыша. Это малозатратный универсальный и быстрый метод, позволяющий определить наличие большинства хромосомных болезней любого типа. Будущим родителям всего лишь потребуется сдать кровь. Тем, у кого уже есть в семье ребёнок с генетическим заболеванием, сделать это необходимо в обязательном порядке перед повторной беременностью.

Ссылка на основную публикацию
Хорошие таблетки для улучшения сна список, инструкция
Лекарства для сна Бессонница или расстройство сна – нарушение нормальных функций организма, которое характеризуется ухудшением качества и уменьшением продолжительности ночного...
Холензим цена в Москве от 253 руб, купить Холензим, отзывы и инструкция по применению
Холензим, табл. п/о №50 Всего цен на Холензим в аптеках Москвы: 600 Первая « 1 2 3 4 5 6...
Холестериды, всасывание холестерина
Как происходит синтез холестерина в печени? Поскольку вещество принадлежит к классу спиртов, единственно правомочным является термин «холестерол», название же «холестерин»...
Хортоновская (пучковая) головная боль
Болезнь Хортона Гигантоклеточный темпоральный артериит (болезнь Хортона) — воспалительное заболевание (васкулит) с аутоиммунным механизмом развития, поражающее преимущественно крупные и средние...
Adblock detector