Холестериды, всасывание холестерина

Как происходит синтез холестерина в печени?

Поскольку вещество принадлежит к классу спиртов, единственно правомочным является термин «холестерол», название же «холестерин» (буквально «твёрдая желчь» ввиду его первоначального выделения из желчных камней) закрепилось за соединением в силу традиции – впервые полученное в 1769 году французским химиком Пулетье де ля Саль, оно проявляло явные свойства жиров, к коим и было первоначально причислено.

Ввиду некоторых добросовестных заблуждений учёных, холестерин был на долгие годы объявлен для здоровья организма «врагом №1», что вызвало настоящий переворот в пищевой промышленности, фармакологии и методах лечения – одновременно с обезжиренными продуктами в мир явилась новые препараты и методики, способные существенно снизить концентрацию соединения в крови, а вместе со всем этим – и аппараты контроля за «вредителем», чтобы его можно было всегда держать в узде.

Поскольку лучшим способом проверить вредоносность того или иного фактора является метод его изъятия из обращения, это и было проделано – в итоге весь мир теперь пожинает катастрофические плоды «обезжиривающей диеты», а учёные вынуждены оправдываться и обещать всё исправить. Но сделать это можно, лишь разобравшись в происхождении и истинной роли вещества в организме.

Основные функции холестерина

Помимо того, что он является непременным компонентом (стабилизатором текучести) цитоплазматической мембраны, обеспечивая жёсткость её двойного слоя за счёт более компактного размещения фосфолипидных молекул, холестерин проявляет себя как фактор-регулятор проницаемости клеточных стенок, препятствуя гемолизу крови (воздействию гемолитических ядов на мембраны эритроцитов).

Еще он служит исходной субстанцией для производства соединений стероидной группы:

  • гормонов-кортикостероидов;
  • половых гормонов;
  • желчных кислот;
  • витаминов D-группы (эргокальциферорола и холекальциферола).

Учитывая важность для организма каждого из этой группы веществ, становится понятен вред бесхолестериновой диеты либо искусственного снижения уровня этого вещества в крови.

Ввиду нерастворимости в воде эта субстанция может быть транспортирована кровью лишь в связке с белками-транспортёрами (аполипопротеинами), при соединении с которыми образуются липопротеиновые комплексы.

По причине существования целого ряда различных аполипопротеинов (с различием молекулярной массы, степенью их тропности к холестерину, а также ввиду способности образованного комплекса к растворению в крови, и наличия обратных свойств – к выпадению холестериновых кристаллов с образованием атеросклеротической бляшки) выделяют категории липопротеинов:

  • высокой плотности (ЛПВП, или высокомолекулярные, или HDL-липопротеины);
  • низкой плотности (ЛПНП, или низкомолекулярные, или LDL-липопротеины);
  • очень низкой плотности (ЛПОНП, крайне низкомолекулярные, или VLDL- категория липопротеинов);
  • хиломикроны.

К тканям периферии холестерин поступает связанным с хиломикронами, ЛПНП либо ЛПОНП, в печень (с последующими удалением из организма) – путём транспортировки аполипопротеинами категории ЛПВП.

Особенности синтеза

Для того чтобы из холестерина образовались либо атеросклеротические бляшки (становящиеся одновременно и «заплатками» на повреждённой стенке артерии, и внутренними «распорками» в той зоне, где без них атрофия мышечного слоя должна бы привести к её окклюзии – спадению участка), либо гормоны, либо иная продукция, он в организме должен сначала синтезироваться в одном из трёх мест:

  • коже;
  • кишечнике;
  • печени.

Поскольку клетки печени (их цитозоль и гладкий эндоплазматический ретикулюм) являются главными поставщиками соединения (в 50% и свыше того), следует рассмотреть синтез вещества именно с позиции совершающихся в ней реакций.

Синтез холестерина происходит в 5 этапов – с последовательным образованием:

  • мевалоната;
  • изопентенилпирофосфата;
  • сквалена;
  • ланостерина;
  • собственно холестерина.

Цепочка превращений была бы невозможной без участия ферментов, катализирующих каждую из стадий процесса.

Видео о синтезе холестерина:

Ферменты, принимающие участие в образовании вещества

На первом этапе (состоящем из трёх операций), ацетил-CoA-ацетилтрасферазой (тиолазой) первоначально инициируется создание ацетоацетил-CoA (здесь и далее CoA – коэнзим А) путём слияния 2 молекул ацетил-CoA. Далее при участии ГМГ-CoA-синтазы (гидроксиметил-глутарил-CoA-синтазы) становится возможным синтез из ацетоацетила-CoA и ещё одной молекулы ацетил-CoA ꞵ-гидрокси-ꞵ-метилглутарил-CoA.

При восстановлении ГМГ (ꞵ-гидрокси-ꞵ-метил-глутарил-CoA) путём отщепления фрагмента HS-CoA с участием НАДФ-зависимой гидроксиметил-глутарил-CoA-редуктазы (ГМГ-CoA-редуктазы) образуется первый промежуточный продукт – предшественник холестерина (мевалонат).

На этапе синтеза изопентинилпирофосфата осуществляются четыре операции. На 1 и 2 мевалонат при посредстве мевалонаткиназы (а затем фосфомевалонаткиназы) путём дважды повторяющегося фосфорилирования превращается в 5-фосфомевалонат, а далее в 5-пирофосфомевалонат, на 3 стадии (фосфорилировании по 3-му углеродному атому) становящемуся 3-фосфо-5-пирофосфомевалонатом (при участии фермента киназы).

Последняя операция – это декарбоксилирование и дефосфорилирование с образованием изопентинилпирофосфата (инициированное участием фермента пирофосфомевалонат-декарбоксилазы).

При синтезе сквалена происходит первоначальная изомеризация изопентенилпирофосфата в диметилаллилпирофосфат (под влиянием изопентилфосфатизомеразы), затем изопентенилпирофосфат конденсируется с диметилаллилпирофосфатом (образуется электронная связь между C5 первой и C5 второй субстанций) с образованием геранилпирофосфата (и отщеплением пирофосфатной молекулы).

На следующей стадии образуется связь между C5 изопентенилпирофосфата и C10 геранилпирофосфата – в результате конденсации первого со вторым происходит образование фарнезилпирофосфата и отщеплением следующей молекулы пирофосфата от C15.

Завершается данный этап конденсацией двух фарнезилпирофосфатных молекул в зоне C15— C15 (по принципу «головой-к-голове») с отщеплением сразу 2 молекул пирофосфата. Для конденсации обеих молекул используются области пирофосфатных групп, одна из которых сразу отщепляется, что приводит к возникновению прескваленпирофосфата. При восстановлении НАДФН (с отщеплением второго пирофосфата) эта промежуточная субстанция (под влиянием сквален-синтазы) обращается в скавален.

В синтезе ланостерина присутствуют 2 операции: первая завершается образованием эпоксида сквалена (под действием скваленэпоксидазы), вторая – циклизацией эпоксида сквалена в конечный продукт этапа – ланостерин. Перемещением метильной группы от C14 на C13, а от C8 на C14 ведает оксидосквален-ланостерин-циклаза.

Последний этап синтеза включает в себя последовательность из 5 операций. В результате окисления C14 -метильной группы ланостерина возникает соединение, именуемое 14-десметилланостерином. После удаления ещё двух метильных групп (на C4) вещество становится зимостеролом, а в результате перемещения двойной связи C89 в позицию C87 происходит образование δ-7,24- холестадиенола (под действием изомеразы).

После перемещения двойной связи С7=C8 в позицию С56 (с образованием десмостерола) и восстановлением двойной связи в боковой цепи образуется конечное вещество – холестерин (вернее, холестерол). «Руководит» финальной стадией синтеза холестерина фермент δ-24-редуктаза.

Что влияет на тип холестерина?

Учитывая малую растворимость низкомолекулярных липопротеидов (ЛПНП), их склонность к выпадению в осадок холестериновых кристаллов (с образованием в артериях бляшек атеросклероза, повышающих вероятность сердечных и сосудистых осложнений), липопротеиды данной категории часто называют «вредным холестерином», в то время как липопротеиды с высоким молекулярным весом (ЛПВП) с противоположными свойствами (без риска атерогенности) принято именовать холестерином «полезным».

Читайте также:  Уход за ногтями ребенка Как правильно ухаживать и Как подстричь ногти новорожденному ребенку

Принимая во внимание относительность этого суждения (в организме не может быть как чего-либо безусловно полезного, так и исключительно вредного), тем не менее в настоящий момент для лиц с высокой склонностью к сосудистой патологии предлагаются меры контроля и снижения уровня ЛПНП до оптимальных показателей.

При цифре свыше 4,138 ммоль/л рекомендован подбор диеты для снижения их уровня до 3,362 (либо менее того), уровень свыше 4,914 служит показанием для назначения терапии по искусственному их снижению приёмом лекарственных препаратов.

К повышению в крови фракции «вредного холестерина» приводят факторы:

  • низкой активности тела (гиподинамии);
  • переедания (пищевой зависимости), а также его последствий – избытка массы либо ожирения;
  • несбалансированности диеты – с преобладанием трансжиров, легкоусвояемых углеводов (сладостей, сдобы) в ущерб содержанию пектиновых веществ, клетчатки, витаминов, микроэлементов, жирных кислот полиненасыщенного состава;
  • наличия привычных бытовых интоксикаций (курения, употребления спирта в виде различных напитков, злоупотребления лекарственными средствами).

Не менее мощное влияние оказывает наличие хронической соматической патологии:

  • желчнокаменной болезни;
  • эндокринных расстройств с гиперпродукцией гормонов коры надпочечников, дефицитом тиреоидных либо половых гормонов, либо сахарного диабета;
  • почечной и печёночной недостаточности с расстройствами отдельных этапов синтеза «полезных» липопротеидов, происходящего в данных органах;
  • наследственно обусловленных дислипопротеинемий.

Состояние холестеринового обмена напрямую зависит от состояния микрофлоры кишечника, способствующей (либо препятствующей) всасыванию пищевых жиров, а также участвующей в синтезе, трансформации, либо разрушении стеролов экзогенного или эндогенного происхождения.

И наоборот, к снижению показателя «вредного» холестерина приводят:

  • занятия физкультурой, играми, танцами;
  • ведение здоровой жизни без курения и алкоголя;
  • правильная пища без избытка легкоусвояемых углеводов, с малым содержанием животных жиров насыщенного состава – но с достаточным содержанием клетчатки, жирных кислот полиненасыщенного состава, липотропных факторов (лецитина, метионина, холина), микроэлементов, витаминов.

Видео от эксперта:

Как происходит процесс в организме?

С потребляемой пищей в организм поступают лишь около 20% холестерина – остальные 80% он вырабатывает сам, помимо печени процесс синтеза производится гладким эндоплазматическим ретикулюмом клеток:

  • кишечника;
  • надпочечных желёз;
  • почек;
  • половых желёз.

Помимо описанного выше классического механизма создания молекулы холестерола, возможно её построение и иным, не мевалонатным методом. Так, одним из вариантов является образование вещества из глюкозы (происходящее при посредстве других ферментов и при других условиях существования организма).

Холестерин

Холестерин — это вещество, необходимое организму для строительства клеточных мембран, синтеза желчных кислот, выработки гормонов и витамина D. С химической точки зрения холестерин является жироподобным веществом — липидом (от греческого «lipid» — жир).
Холестерин в организме человека синтезируется главным образом в печени. Являясь жироподобным веществом, нерастворимым в воде, он переносится по кровеносным сосудам только в составе комплексов с белками – хиломикронов и липопротеидов. Главными переносчиками холестерина в организме являются липопротеиды. Липопротеиды (белково-липидные комплексы) различаются по размеру, плотности и содержанию липидов.

По плотности липопротеиды разделяются на следующие классы:

• липопротеиды очень низкой плотности (ЛПОНП)
• липопротеиды промежуточной плотности (ЛППП)
• липопротеиды низкой плотности (ЛПНП)
• липопротеиды высокой плотности (ЛПВП)

Соотношение жиров (липидов) и белков в липопротеидах различно. Минимальное количество белка содержится в хиломикронах. Возрастание плотности липопротеидов характеризуется увеличением содержания в них белкового компонента, как показано в таблице.

Процентный состав липопротеидов плазмы крови
(G.R. Thompson, 1991)

Тип Липиды Белки
Хиломикроны 98–99% 1–2%
ЛПОНП 90% 10%
ЛППП 82% 18%
ЛПНП 75% 25%

Липопротеиды различаются по их роли в развитии атеросклероза. Так, липопротеиды низкой и очень низкой плотности считаются атерогенными (способствующими развитию атеросклероза), а содержащийся в них холестерин называют «плохим» холестерином. ЛПОНП и ЛПНП транспортируют холестерин из печени в клетки и ткани организма.
Липопротеиды высокой плотности (ЛПВП), напротив, считаются антиатерогенными (препятствующими развитию атеросклероза), а содержащийся в них холестерин называют «хорошим» холестерином. Липопротеиды высокой плотности (ЛПВП) за рубежом называют «полицейскими атеросклероза». Антиатерогенное действие ЛПВП проявляется благодаря их способности захватывать холестерин, выводить его из клеток, тканей, в том числе стенок артерий, и транспортировать обратно в печень.
В организме имеется три субстрата (или «пула»), где находится холестерин. Это плазма крови, печень, вернее — клетки печени (гепатоциты), и клетки других органов. Холестерин, находящийся в печени, находится в динамическом равновесии с холестерином плазмы крови. В зависимости от активности печеночных клеток количество (концентрация) холестерина плазмы крови может существенно меняться.
Содержание достаточного для организма количества холестерина поддерживается его постоянным синтезом
в клетках печени. Холестерин, образующийся в клетках печени, называют эндогенным холестерином. Холестерин также поступает в организм с пищей. Это так называемый экзогенный холестерин. Если экзогенного холестерина доставляется в печень много, то при нормальном обмене ограничивается синтез эндогенного холестерина.
Как уже отмечалось холестерин жироподобным веществом, нерастворимым в воде, он переносится по кровеносным сосудам только в составе комплексов с белками. Эти белково-липидные комплексы (ЛПОНП, ЛППП, ЛПНП и ЛПВП) также образуются в печени и затем поступают в кровоток.
Помимо перечисленных соединений в печени образуется еще один вид жиров, ассоциированных с риском развития атеросклероза. Это триглицериды. Они транспортируются к мышцам, накапливаются там, и при необходимости расщепляются, становясь источником энергии.

Свободный холестерин подвергается окислению в печени и органах, синтезирующих стероидные гормоны (надпочечники, семенники, яичники, плацента). Это единственный процесс необратимого выведения холестерина из мембран и липопротеидных комплексов.
Ежедневно на синтез стероидных гормонов расходуется 2–4% от общего количества холестерина. В гепатоцитах 60–80% холестерина окисляется до желчных кислот, которые в составе желчи выделяются в просвет тонкой кишки и участвуют в пищеварении (эмульгирование жиров).
Вместе с желчными кислотами в тонкую кишку попадает небольшое количество свободного холестерина, который частично удаляется с каловыми массами, а оставшаяся часть его растворяется и вместе с желчными кислотами и фосфолипидами всасывается стенками тонкой кишки. Желчные кислоты обеспечивают разложение жиров на составные части (эмульгирование жиров). После выполнения этой функции 70–80% оставшихся желчных кислот всасывается в конечном отделе тонкой кишки (подвздошной кишке) и поступает по системе воротной вены в печень. Здесь стоит отметить, что желчные кислоты имеют еще одну функцию: они являются важнейшим стимулятором поддержания нормальной работы (моторики) кишечника.
Схематично обмен холестерина можно представить так. Печень нагружает жиром липопротеиды очень низкой плотности (ЛПОНП), которые потом путешествуют по кровеносным сосудам, разгружая жир. Частично «разгрузившиеся» ЛПОНП становятся липопротеидами низкой плотности (ЛПНП).
Липопротеиды низкой плотности (ЛПНП), главные переносчики холестерина при их движении по кровеносным сосудам, могут прилипать
к стенкам сосудов, сужая их внутренний просвет.
Липопротеиды высокой плотности (ЛПВП) освобождают прилипшие к стенке сосуда частицы ЛПНП с холестерином и несут их обратно в печень, где частицы ЛПНП снова нагружаются холестерином и превращаются в ЛПОНП, либо распадаются и выводятся из организма.
При активном потреблении жирной пищи и нарушениях жирового обмена печень вырабатывает избыточное количество липопротеидов очень низкой плотности (ЛПОНП) и низкой плотности (ЛПНП). При наличии повреждений эндотелия и отсутствии достаточного количества липопротеидов высокой плотности (ЛПВП), частицы липопротеидов низкой плотности (ЛПНП) с холестерином начинают «прилипать» к стенкам сосудов. Постепенно развивается сужение сосудов, т. е. атеросклероз, а следом все неприятности: стенокардия, инфаркт, инсульт и другие осложнения атеросклероза.

Читайте также:  Как избавиться от шпоры Лучшие рецепты против «гвоздя в пятке» Здоровая жизнь Здоровье Аргументы

Для чего определяют индекс атерогенности?

Для оценки выраженности атерогенных (способствующих развитию атеросклероза) свойств плазмы крови и степени риска развития клинических проявлений атеросклероза используются формулы, позволяющие рассчитать индекс атерогенности (ИА) по соотношению атерогенных и антиатерогенных фракций липопротеидов. Существует множество способов для вычисления индекса атерогенности.
Один из наиболее распространенных в мире – определение индекса атерогенности, как соотношения общего холестерина (ОХС) к холестерину ЛПВП (ОХС/ХС ЛПВП). Он свидетельствует об атерогенности липидного спектра крови при уровне > 5.
В России широко используют другое соотношение, называемое индексом атерогенности А. Н. Климова. Это отношение суммы холестерина атерогенных липопротеидов низкой плотности (ХС ЛПНП) и очень низкой плотности (ХС ЛПОНП) к холестерину антиатерогенных липопротеидов высокой плотности (ХС ЛПВП).

Индекс атерогенности (А.Н. Климова)= ХС ЛПНП + ХС ЛПОНП / ХС ЛПВП =
ОХС – ХС ЛПВП / ХС ЛПВП

Обе формулы приведены потому, что они одинаковы. Дело в том, что общий холестерин (ОХС) состоит из ХС ЛПНП, ХС ЛПОНП и ХС ЛПВП.

Лабораториям в поликлинике или больнице для простоты вычисления индекса атерогенности достаточно определить в крови пациента уровни общего холестерина и холестерина ЛПВП. Если от уровня общего холестерина отнять показатель ХС ЛПВП, то получим сумму холестерина атерогенных липопротеидов – ЛПНП и ЛПОНП.
Нормальное значение индекса атерогенности А.Н. Климова — 3,0–4,0. Значение индекса атерогенности выше 4,0 указывает на высокий риск развития атеросклероза или возможность его прогрессирования вплоть до развития серьезных осложнений.

Высокий уровень холестерина – ключевой фактор риска атеросклероза

Еще в начале ХХ века петербургский ученый, основатель холестериновой теории атеросклероза Н. Н. Аничков говорил: «без высокого уровня холестерина в крови не бывает атеросклероза». С этим согласно большинство отечественных и зарубежных исследователей.
С начала прошлого века была установлена связь атеросклероза с повышенным содержанием в крови холестерина — химического соединения, необходимого для жизнедеятельности человеческого организма. В первую очередь, как уже отмечалось, он необходим как строительный материал для клеточных мембран. Кроме формирования каркаса клеток, организм использует холестерин для синтеза многих жизненно необходимых веществ, например, гормонов (кортикостероидов, андрогенов, эстрогенов и др.) и витаминов.
Таким образом, с одной стороны — жизнь без холестерина невозможна, с другой стороны — холестерин является едва ли не главной угрозой для современного человека. Это противоречие кажущееся, так как исследователями было установлено, что ответственным за возникновение и развитие атеросклероза является не сам холестерин, а повышенный уровень ряда его соединений с белками – ЛПОНП и ЛПНП в сочетании с пониженным уровнем ЛПВП.

К сожалению, люди, сами того не замечая, способствуют развитию атеросклероза. Как уже отмечалось ранее, еще в раннем детском возрасте на стенках сосудов могут образовываться жировые (или липидные) пятна. Если уровень холестерина в крови нормальный, то жировые пятна со временем исчезают и атеросклеротические бляшки не образуются. Но в условиях повышенного уровня холестерина, вернее холестерина ЛПОНП и ЛПНП, человек подвергается повышенному риску развития грозного по своему прогнозу заболевания. А если он еще и курит, имеет избыточный вес и повышенное артериальное давление, то риск развития атеросклероза возрастает в несколько раз. Все перечисленные факторы могут приводить к повреждению эндотелия (внутренней выстилки) сосудов, где начинается процесс образования атеросклеротических бляшек. Поэтому так важно знать пути профилактики и основы лечения «болезни века».
Риск развития осложнений атеросклероза особенно высок при тяжелых врожденных нарушениях липидного обмена, которые передаются по наследству и которыми, как правило, страдают все близкие родственники. Такие случаи принято относить к семейной гиперхолестеринемии, вызываемой наследственным дефектом рецепторов липопротеидов низкой плотности. Ген локализуется в 19-й хромосоме.
Различают гомозиготную и гетерозиготную семейную гиперхолестеринемию. При гетерозиготной гиперхолестеринемии общий холестерин бывает выше нормативных показателей в 2–3 раза, а при гомозиготной гиперхолестеринемии – в 4–6 и более раз. Оба эти состояния — предвестники раннего развития клинических проявлений атеросклероза в виде ишемической болезни сердца и даже — инфаркта миокарда.
Мы лечили семнадцатилетнюю (!) девушку, страдавшую тяжелой формой ишемической болезни сердца. У ее родителей также наблюдалось ранее развитие атеросклероза. Отец перенес инфаркт миокарда в 29 лет, мать была оперирована по поводу ишемической болезни сердца в 35 лет и в 40 лет — по поводу ишемической болезни головного мозга.
В предисловии к монографии, посвященной хирургической коррекции нарушений жирового обмена, изданной в 1987 г., академик А. Н. Климов пишет о девочке с гомозиготной семейной гиперхолестеринемией, которая в 6-летнем возрасте перенесла инфаркт миокарда, имея цифры холестерина плазмы крови в 10 раз превышающие нормальные.

При наследственной гиперхолестеринемии степень риска развития в молодом возрасте ишемической болезни сердца в 20 раз выше, чем у людей, имеющих нормальный липидный спектр крови.
Каким же образом нарушается липидный обмен при наследственной гиперхолестеринемии? В результате мутаций генов нарушается обмен липопротеидов низкой плотности – самых атерогенных липопротеидов. Этот механизм открыли во второй половине ХХ века американские ученые Браун и Гольдштейн, за что получили Нобелевскую премию. Как они выяснили, на поверхности большинства клеток организма имеются особые молекулы белка, называемые «рецепторами». Их задача — забирать из тока крови не все липопротеиды, а только липопротеиды низкой плотности (ЛПНП), богатые холестерином, и отправлять их внутрь клетки. Освободившись от холестерина, рецепторы возвращаются обратно на ее поверхность. Так как холестерина внутри клетки становится много, то угнетается его синтез самой клеткой и значит — уменьшается количество рецепторов к липопротеидам низкой плотности, находящихся на мембране. В течение суток эти рецепторы захватывают из плазмы крови до 1 г холестерина. Такой захват рецепторами липопротеидов низкой плотности обеспечивает нормальный уровень холестерина в крови, препятствуя развитию атеросклероза. Недостаток таких рецепторов находится в основе наследственной семейной гиперхолестеринемии.
Мы не будем останавливаться очень подробно на механизме различных видов семейной гиперхолестеринемии, но отметим, что существует 5 типов мутаций, при которых рецепторы к липопротеидам низкой плотности не работают.

Читайте также:  Антигены системы Rh (C, E, c, e), Kell – фенотипирование

Частота гетерозиготной семейной гиперхолестеринемии составляет 1:500, гомозиготной семейной гиперхолестеринемии — 1: 1 000 000 жителей нашей планеты, и люди, имеющие их, обязательно заболевают атеросклерозом, даже если соблюдают низкохолестериновую диету. Чтобы в молодом возрасте не возникли тяжелейшие клинические проявления атеросклероза (например, инфаркт миокарда и другие), они обречены на пожизненный прием лекарственных препаратов, нормализующих липидный обмен.
Таким образом, в основе развития атеросклероза лежат процессы, связанные с нарушением жирового (липидного) обмена. Они проявляются различным соотношением липидов и липопротеидов и называются дислипидемиями.
Наиболее часто встречаются дислипидемии, обусловленные нарушением синтеза и замедлением распада липидов, снижением активности мембранных транспортных систем, обеспечивающих перенос холестерина и триглицеридов из клетки.
Различают первичные и вторичные дислипидемии. Первичные дислипидемии — это самостоятельные нарушения процессов синтеза и распада липопротеидов, связанные как с особенностями образа жизни, так и с генетически обусловленными метаболическими дефектами. Вторичные дислипидемии возникают на фоне различных заболеваний, в том числе гормональных (гипотиреоз, беременность), метаболических (сахарный диабет, ожирение, подагра), почечных (нефротический синдром, хроническая почечная недостаточность), токсикозависимостей (алкоголь).

Какой уровень холестерина считается нормальным?

Первым шагом в соблюдении правил по снижению уровня холестерина является проверка его содержания в крови. Анализ на содержание холестерина в крови выполняется практически во всех поликлиниках и больницах бесплатно или за небольшую плату.
Анализ крови на содержание в ней холестерина обычно не требует предварительной подготовки, но выполняется это исследование натощак, через 10 часов после последнего приема пищи. Берется небольшое количество крови, которое исследуется сразу же экспресс-методом или посылается в лабораторию. Если исследование проводится экспересс-методом, то ответ выдается сразу же. Если выполняется развернутый анализ (липидограмма), кровь отсылается в лабораторию, и ответ может быть готов на следующий день или через день.

Запомните уровень своего холестерина и его компонентов.

Самый простой анализ – это определение уровня общего холестерина. Общий холестерин (ОХС) складывается из холестерина липопротеидов низкой плотности (ЛПНП), липопротеидов очень низкой плотности (ЛПОНП) и липопротеидов высокой плотности (ЛПВП):

ОХС = ХС ЛПНП + ХС ЛПОНП + ХС ЛПВП

Поговорим о нормативах липидного спектра крови. Количество холестерина и липопротеидов измеряется в миллимолях на литр (ммоль/л) или в миллиграмм на децилитр (мг/дл). Какой уровень показателей липидного спектра считается нормальным?

Нормативы разные для здоровых людей, имеющих низкий риск сердечно-сосудистых заболеваний, и больных сердечно-сосудистыми заболеваниями.

Итак, нормативы липидного спектра крови для здоровых людей:

Общий холестерин (ОХС) 1,0 ммоль/л (> 40 мг/дл) у мужчин
> 1,2 ммоль/л (> 45 мг/дл) у женщин
Триглицериды (ТГ) 1,0 ммоль/л (> 40 мг/дл) у мужчин
> 1,2 ммоль/л (> 45 мг/дл) у женщин
Триглицериды (ТГ) ОХС ОХС ОХС ОХС > 7,8 ммоль/л (ОХС > 300 мг/дл)

Эндогенный синтез холестерина

174-175

Холестерин — важная составная часть клеточных мембран животных клеток (см. с. 218). Суточная потребность в холестерине (1 г) может в принципе покрываться за счет биосинтеза . При смешанной диете примерно половина суточной нормы холестерина синтезируется в кишечнике, коже и главным образом в печени (примерно 50%), а остальной холестерин поступает с пищей. Значительная часть холестерина включена в липидный слой плазматических мембран. Большое количество холестерина расходуется в биосинтезе желчных кислот (см. с. 306), часть выделяется с желчью. Ежесуточно из организма выводится примерно 1 г холестерина. Очень небольшая часть холестерина используется для биосинтеза стероидных гормонов (см. с. 364).

А. Биосинтез холестерина

Биосинтез холестерина, кап и всех изопреноидов, начинается с ацетил-КоА (см. с. 58). Углеродный скелет С 27 -стерина строится из С 2 -звеньев в длинной и сложной последовательности реакций. Биосинтез холестерина можно разделить на четыре этапа. На первом этапе ( 1 ) из трех молекул ацетил-КоА образуется мевалонат (С 6 ). На втором этапе ( 2 ) мевалонат превращается в «активный изопрен», изопентенилдифосфат . На третьем этапе ( 3 ) шесть молекул изопрена полимеризуются с образованием сквалена (С 30 ). Наконец, сквален циклизуется с отщеплением трех атомов углерода и превращается в холестерин ( 4 ). На схеме представлены только наиболее важные промежуточные продукты биосинтеза.

1. Образование мевалоната. Превращение ацетил-КоА в ацетоацетил-КоА и затем в З-гидрокси-З-метилглутарил-КоА (3-ГМГ-КоА) соответствует пути биосинтеза кетоновых тел (подробно см. рис. 305), однако этот процесс происходит не в митохондриях, а в эндоплазматическом ретикулуме (ЭР). 3-ГМГ-КоА восстанавливается с отщеплением кофермента А с участием 3-ГМГ-КоА-редуктазы , ключевого фермента биосинтеза холестерину (см. ниже). На этом важном этапе путем репрессии биосинтеза фермента (эффекторы: гидроксистерины), а также за счет взаимопревращения молекулы фермента (эффекторы: гормоны) осуществляется регуляция биосинтеза холестерина. Например, фосфорилированная редуктаза представляет собой неактивную форму фермента; инсулин и тироксин стимулируют фермент, глюкагон тормозит; холестерин, поступающий с пищей, также подавляет 3-ГМГ-КоА-редуктазу.

2. Образование изопентенилдифосфата. Мевалонат за счет декарбоксилирования с потреблением АТФ превращается в изопентенилдифосфат , который и является тем структурным элементом, из которого строятся все изопреноиды (см. рис. 59).

3. Образование сквалена. Изопентенилдифосфат подвергается изомеризации с образованием диметилаллилдифосфата. Обе С 5 -молекулы конденсируются в геранилдифосфат и в результате присоединения следующей молекулы изопентенилдифосфата образуют фарнезилдифосфат. При димеризации последнего по типу « голова к голове » образуется сквален. Фарнезилдифосфат является также исходным соединением для синтеза других полиизопреноидов, таких, как долихол и убихинон (см. с. 58).

4. Образование холестерина. Сквален, линейный изопреноид, циклизуется с потреблением кислорода в ланостерин, С 30 -стерин, от которого на последующих стадиях, катализируемых цитохромом Р450 , отщепляются три метильные группы, вследствие чего образуется конечный продукт — холестерин.

Описанный путь биосинтеза локализован в гладком ЭР. Синтез идет за счет энергии, освобождающейся при расщеплении производных кофермента А и энергетически богатых фосфатов. Восстановителем при образовании мевалоната и сквалена, а также на последних стадиях биосинтеза холестерина является НАДФН + Η + . Для этого пути характерно то, что промежуточные метаболиты можно подразделить на три группы: производные кофермента А, дифосфаты и высоко липофильные соединения (от сквалена до холестерина), связанные с переносчиками стеринов.

Ссылка на основную публикацию
Холензим цена в Москве от 253 руб, купить Холензим, отзывы и инструкция по применению
Холензим, табл. п/о №50 Всего цен на Холензим в аптеках Москвы: 600 Первая « 1 2 3 4 5 6...
Хламидиоз чем грозит при беременности
Опасность заражения хламидиозом у беременных и возможные последствия для ребенка Женщины, столкнувшись с заболеванием, задаются вопросом: чем опасен хламидиоз при...
Хламидия трахоматис (Chlamydia Trachomatis) что это такое, ее симптомы, пути заражения, диагностика
Определение антител к белкам MOMP и Pqp3 хламидии трахоматис (Chlamydia trachomatis) в крови Описание Подготовка Интерпретация результатов Антитела класса IgG...
Холестериды, всасывание холестерина
Как происходит синтез холестерина в печени? Поскольку вещество принадлежит к классу спиртов, единственно правомочным является термин «холестерол», название же «холестерин»...
Adblock detector